Math 409 Midterm 1 practice

Name: _____

This exam has 3 questions, for a total of 100 points.

Please answer each question in the space provided. No aids are permitted.

Question	Points	Score
1	40	
2	30	
3	30	
Total:	100	

Question 1. (40 pts)

In each of the following eight cases, indicate whether the given statement is true or false. No justification is necessary.

(a) Let E be a set and suppose that there exists a surjective function $f \colon \mathbb{R} \to E$. Then E is uncountable.

Solution: False.

(b) If E is a subset of \mathbb{R} which has a supremum, then the set $-E = \{-x \colon x \in E\}$ has an infimum.

Solution: True.

(c) Let $a \in \mathbb{R}$. Then $|a| < \varepsilon$ for all $\varepsilon > 0$ if and only if a = 0.

Solution: True.

(d) If $\{E_x\}_{x\in\mathbb{R}}$ is a collection of finite sets indexed by the real numbers, then $\bigcup_{x\in\mathbb{R}} E_x$ is at most countable.

Solution: False.

(e) Every subset of \mathbb{R} has at most two suprema.

Solution: True.

(f) Let $f \colon \mathbb{R} \to \mathbb{R}$ be defined by $f(x) = x^2$. Then $f^{-1}([0,1]) = [-1,1]$.

Solution: True.

(g) Let A_1, A_2, A_3, \cdots be nonempty finite subsets of \mathbb{N} such that $A_n \cap A_m = \emptyset$ for all distinct $n, m \in \mathbb{N}$. Define the function $f \colon \mathbb{N} \to \mathbb{N}$ by declaring f(n) to be the least element of A_n . Then f is injective.

Solution: True.

(h) Let A_1, A_2, A_3, \cdots be nonempty bounded subsets of \mathbb{R} such that $A_n \cap A_m = \emptyset$ for all distinct $n, m \in \mathbb{N}$. Define the function $f \colon \mathbb{N} \to \mathbb{R}$ by $f(n) = \sup A_n$. Then f is injective.

Solution: False.

Question 2. (30 pts)

(a) State the well-ordering principle.

Solution: If E is a nonempty subset of \mathbb{N} , then E has a least element.

(b) Prove that $2^{n-1} \leq n!$ for all $n \in \mathbb{N}$.

Solution: Let A(n) be the statement that

$$2^{n-1} \le n!.$$

If n = 1, then the LHS (left hand side) is $2^0 = 1$ and the RHS (right hand side) is 1! = 1. Therefore, A(1) is true.

Now suppose A(n) is true for some $n \ge 1$. In particular, $n + 1 \ge 2$. Then for A(n + 1),

LHS = $2^n = 2 \cdot 2^{n-1} \le 2 \cdot n! \le (n+1) \cdot n! = (n+1)! = RHS.$

Thus A(n + 1) is true whenever A(n) is true. We conclude by induction that A(n) is true for all $n \in \mathbb{N}$.

Question 3. (30 pts)

(a) State the completeness axiom for \mathbb{R} .

Solution: For every nonempty subset $E \subset \mathbb{R}$, if E is bounded above, then E has a finite supremum.

(b) Let A be a nonempty bounded subset of \mathbb{R} , and consider the set $B = \{x^2 \colon x \in A\}$. Prove that sup B exists.

Solution: B is nonempty, since A is nonempty. Because A is bounded, there exists $M \ge 0$ such that $|x| \le M$ for all $x \in A$. Then we have

$$x^2 = |x|^2 \le M^2$$

for all $x \in A$. In other words, B is bounded above by M^2 . Now by the completeness of \mathbb{R} , we conclude that B has a finite supremum.

(c) Give an example to show that the equality $\sup B = (\sup A)^2$ may fail in part (b).

Solution: For example, let $A = \{-4, 1\}$. Then $\sup A = 1$, hence $(\sup A)^2 = 1$. On the other hand, $B = \{16, 1\}$ and $\sup B = 16$. So $\sup B \neq (\sup A)^2$.